2022 - 2023

ROTATIONAL MOTION PART 2

Rotational KE: is the sum of translational KE of all individual particles Let the object consists of N particles of mass m1,m2,...mN at respective perpendicular distance of $r_1, r_2, ..., r_N$ from the axis of rotation. As the rigid body is

rotating, all these particles are performing UCM with constant angular speed ω about

an axis perpendicular to the plane of paper. But they all have different linear speeds v1=r1 ω , v2=r2 ω, vN=rN ω

Translational KE is KE₁= $\frac{1}{2}$ m₁v₁²= $\frac{1}{2}$ m₁r₁² ω^2 , KE₂= $\frac{1}{2}$ m₂v₂²= $\frac{1}{2}$ m₂r₂² ω^2 ,.... Rotational KE= $\frac{1}{2}$ m₁r₁² ω^2 + $\frac{1}{2}$ m₂r₂² ω^2 +.....+ $\frac{1}{2}$ m_Nr_N² ω^2

= $\frac{1}{2} (m_1 r_1^2 + m_2 r_2^2 + ... + m_N r_N^2) \omega = \frac{1}{2} I \omega^2$

where $I = m_1r_1^2 + m_2r_2^2 + \dots + m_Nr_N^2 = \sum_{i=1}^N m_i r_i^2$ is the rotational inertia or moment of Inertia (MI) of the object about the given axis of rotation. NOTE: MI depends on individual masses and the distribution of these masses about the axis of rotation.

Angular Momentum in terms of MI:

Let the object consists of N particles of mass m1,m2,...mN at respective perpendicular distance of r1,r2,...,rN from the axis of rotation. As the rigid body is rotating, all these particles are performing UCM with constant angular speed ω about an axis perpendicular to the plane of paper. But they all have different linear speeds $v_1=r_1\omega$, $v_2=r_2\omega$, $v_N=r_N\omega$. These velocities are along the tangent.

Linear momentum is $p_1=m_1v_1=m_1r_1\omega$, $p_2=m_2v_2=m_2r_2\omega$,.....

Angular momentum is $L_1 = m_1 r_1^2 \omega$, $L_2 = m_2 r_2^2 \omega$,...., $L_N = m_N r_N^2 \omega$ Since all have same direction, the magnitude of angular momentum is $L=m_{1}r_{1}^{2}\omega + m_{2}r_{2}^{2}\omega + + m_{N}r_{N}^{2}\omega = (m_{1}r_{1}^{2} + m_{2}r_{2}^{2} + + m_{N}r_{N}^{2})\omega = I\omega$ where $I = m_1 r_1^2 + m_2 r_2^2 + ... + m_N r_N^2 = \sum_{i=1}^N m_i r_i^2$ is the moment of Inertia (MI) of the object about the given axis of rotation.

NOTE: L=I ω is analogous to linear momentum p=mv, if moment of Inertia (I) replaces mass, which is its physical significance.

Torque in terms of MI:

Let the object consists of N particles of mass m1,m2,...mN at respective perpendicular distance of r1,r2,...,rN from the axis of rotation. As the rigid body is rotating, all these particles are performing CM with constant angular acceleration α about an axis

perpendicular to the plane of paper.

But they all have different linear(tangential) accelerations $a_1=r_1\alpha$, $a_2=r_2\alpha$, $a_N = r_N \alpha$. The force experienced by each particle is $f_1 = m_1 a_1 = m_1 r_1 \alpha$, $f_2 = m_2 a_2 = m_2 r_2 \alpha, \dots, f_N = m_N a_N = m_N r_N \alpha$

These forces are tangential and their respective perpendicular distances are r₁, r₂,..., r_N

Torque experienced is $\tau_1=f_1r_1=m_1r_1^2\alpha$, $\tau_2=f_2r_2=m_2r_2^2\alpha$,....., $\tau_N=f_Nr_N=m_Nr_N^2\alpha$ Magnitude of the resulting torque $\tau = \tau_1 + \tau_2 + \dots + \tau_N$

 $\tau = m_1 r_1^2 \alpha + m_2 r_2^2 \alpha + \dots + m_N r_N^2 \alpha = (m_1 r_1^2 + m_2 r_2^2 + \dots + m_N r_N^2) \alpha$ $\tau = I\alpha$, where $I = m_1 r_1^2 + m_2 r_2^2 + ... + m_N r_N^2 = \sum_{i=1}^N m_i r_i^2$ is the moment of Inertia (MI) of the object about the given axis of rotation.

NOTE: τ =I α is analogous to f=ma of linear motion, if moment of Inertia (I) replaces mass, which is its physical significance.

Conservation of Angular Momentum:

Angular momentum $\overline{L} = \overline{r} X \overline{p}$ where \overline{r} is the position vector from the axis of rotation and \bar{p} is the linear momentum

Differentiating w.r.t. time, we get

$$\frac{d\bar{L}}{dt} = \frac{d}{dt}(\bar{r} X \bar{p}) = \bar{r} X \frac{d\bar{p}}{dt} + \frac{d\bar{r}}{dt} X \bar{p}$$

$$\frac{d\bar{L}}{dt} = \bar{r} X \bar{F} + m (\bar{v} X \bar{v}), Since \frac{d\bar{p}}{dt} = \bar{F} \text{ and } \frac{d\bar{r}}{dt} = \bar{r}$$

Since $\bar{v} X \bar{v} = \bar{0}$, Thus $\frac{d\bar{L}}{dt} = \bar{r} X \bar{F}$ which is moment of force of torque

$$au = \frac{d\bar{L}}{dt}\dots If \ au = 0, \frac{d\bar{L}}{dt} = 0$$
 , hence $\bar{L} = constant$ (conserved)

Hence in the absence of external unbalanced torque, \overline{L} is conserved

Examples

Ballet Dancers: During ice ballets the dancers come together (MI decreases, frequency increases) while taking rounds of small radius. While taking outer rounds the dancers outstretch their legs and arms. This will increase the MI and reduces the angular speed and linear speed. This is necessary to prevent slipping

Diving into a swimming pool during a competition: When standing on a diving board the diver stretches to have higher MI. Immediately on leaving the board the diver folds his body, to decrease MI, increase his frequency so he can complete more rounds in air. While just entering the pool diver stretches the body into a streamline shape for smooth entry into water.

PARALLEL AXIS Theorem:

C be the center of mass M Object mass

Axis of rotation MOP is parallel to axis ACB which is passing through center of mass and perpendicular to the plane. h is the distance between the parallel axes. Consider a mass dm at D. The MI

about the two axes is $I_c = \int (DC)^2 dm$ and $I_0 = \int (DO)^2 dm$

$$I_{o} = \int [(DN)^{2} + (ON)^{2}] dm \quad But \ ON = OC + CN$$
$$I_{o} = \int [(DN)^{2} + (OC + CN)^{2}] dm$$
$$= \int [(DN)^{2} + (CN)^{2} + (OC)^{2} + 2(OC)(CN)] dm$$

$$I_0 = \int [(DC)^2 + h^2 + 2(h)(CN)] dm$$

= $\int (DC)^2 dm + h^2 \int dm + 2h \int CN dm$

$$\int (DC)^2 dm = I_c, \quad \int dm = M, \quad \int CN dm = 0,$$

since mass distribution is symmetric

Therfore, $I_0 = I_c + Mh^2$

The MI (I_o) of an object about any axis is given by the sum of the moment of inertial about a parallel axis through the center of mass and product of the mass of the object and the square of the distance between the two axes (Mh²).

PERPENDICULAR AXIS Theorem:

Let us consider a rigid laminar object able to rotate about three mutually perpendicular axes x,y and z. Let x and y axis be in the plane and z axis perpendicular to the plane. All 3 axes meet at O. Let dm be the mass at point P. x and y

are the perpendicular distance of P from the y and x axis respectively. The distance from Z axis will be $\sqrt{x^2 + y^2}$. Let I_x , I_y and I_z be the MI of the body about the respective axes.

$$I_{z} = \int z^{2} dm = \int (x^{2} + y^{2}) dm = \int x^{2} dm + \int y^{2} dm = I_{x} + I_{y}$$

The MI (\mathbf{I}_z) of a laminar object about an axis (z) perpendicular to its plane is the sum of its MI about two mutually perpendicular axes (x and y) in its plane, all three axes being concurrent.

2022 - 2023

Equation for translational motion	Analogous equation for rotational motion
$v_{av} = \frac{u + v}{2}$	$\omega_{av} = \frac{\omega_0 + \omega}{2}$
$a = \frac{d\mathbf{v}}{dt} = \frac{\mathbf{v} - u}{t}$ $\therefore \mathbf{v} = u + at$	$\alpha = \frac{d\omega}{dt} = \frac{\omega - \omega_0}{t}$ $\therefore \omega = \omega_0 + \alpha t$
$s = v_{av} \cdot t$ $= \left(\frac{u + v}{2}\right)t$ $= ut + \frac{1}{2}at^{2}$	$\theta = \omega_{av} \cdot t$ $= \left(\frac{\omega_0 + \omega}{2}\right) t$ $= \omega_0 t + \alpha t^2$
$v^2 = u^2 + 2as$	$\omega^2 = \omega_0^2 + 2\alpha\theta$

Object	Axis	Expression of moment of inertia	Figure
Thin ring or hollow cylinder	Central	$I = MR^2$	e
Thin ring	Diameter	$I = \frac{1}{2}MR^2$	
Annular ring or thick walled hollow cylinder	Central	$I = \frac{1}{2}M(r_2^2 + r_1^2)$	
Uniform disc or solid cylinder	Central	$I = \frac{1}{2}MR^2$	9
Uniform disc	Diameter	$I = \frac{1}{4}MR^2$	
Thin walled hollow sphere	Central	$I = \frac{2}{3}MR^2$	R
Solid sphere	Central	$I = \frac{2}{5}MR^2$	
Uniform symmetric spherical shell	Central	$I = \frac{2}{5} M \frac{\left(r_2^5 - r_1^5\right)}{\left(r_2^3 - r_1^3\right)}$	
Thin uniform rod or rectangular plate	Perpendicular to length and passing through centre	$I = \frac{1}{12} ML^2$	
Thin uniform rod or rectangular plate	Perpendicular to length and about one end	$I = \frac{1}{3}MR^2$	ې
Uniform plate or rectangular parallelepiped	Central	$I = \frac{1}{12}M(L^2 + b^2)$	

Navlakhi®

	Uniform solid right circular cone	Central	$I = \frac{3}{10} MR^2$	
2	Uniform hollow right circular cone	Central	$I = \frac{1}{2}MR^2$	R

Radius of Gyration:

I = MK² where K is called radius of gyration

Moment of inertia of an object of mass M can be represented by a point mass of value M (same as that as the object) and placed at a distance K from the axis of rotation so as to produce the same moment of inertia. K is

called the radius of gyration $K = \sqrt{\frac{I}{M}}$.

Larger the value of K, more away is the mass from axis of rotation.

Rolling Motion:

In case of pure rolling motion,

Total KE= Translational KE of center of mass + Rotational KE

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix}$$

 $=\frac{1}{2}Mv^{2} + \frac{1}{2}I\omega^{2} = \frac{1}{2}Mv^{2} + \frac{1}{2}(MK^{2})\left(\frac{v}{R}\right)^{2} = \frac{1}{2}Mv^{2}\left(1 + \frac{K^{2}}{R^{2}}\right)$ Where K = radius of gyration, R= radius of the body, v = linear speed of center of mass, ω =Angular speed of the body, I=Moment of inertia,

M=mass of the body.

NOTE: Translational : Rotational : Total KE = $1 : \frac{K^2}{R^2} : 1 + \frac{K^2}{R^2}$

Body rolling along an incline:

As the body rolls down, TE on top = TE at the bottom PE top = KE at bottom $mgh = \frac{1}{2}Mv^{2}\left(1 + \frac{K^{2}}{R^{2}}\right)$ therefore, $v = \sqrt{\frac{2gh}{(1 + \frac{K^{2}}{R^{2}})}}$

$$v^{2} = u^{2} + 2as, \text{ Thus } a = \frac{v^{2} - u^{2}}{2s}$$
Assuming body starts at rest,
$$a = \frac{\frac{2gh}{\left(1 + \frac{K^{2}}{R^{2}}\right)}}{2\frac{h}{\sin\theta}} = \frac{gsin\theta}{\left(1 + \frac{K^{2}}{R^{2}}\right)}$$

NOTE: K²/R² for ring=1, for disc or solid cylinder= ½, for solid sphere=2/5

MI of Disc: Elemental ring

Consider a disc of mass M and negligible thickness and radius R. Let the axis of rotation pass through the center of the disc and perpendicular to it place. Let $\sigma = \frac{M}{A} = \frac{M}{\pi R^2}$ be uniform. A disc

can be considered a sequence of rings. Consider one such ring at distance r and mass dm and negligible thickness dr. Then $\sigma = \frac{dm}{2\pi r dr}$. MI of this ring is $\mathbf{I}_r = \text{dm.r}^2$ The MI of the disc will be got by integrating this from r=0 to r=R

$$I = \int_{o}^{R} dm r^{2} = \int_{o}^{R} \sigma 2\pi r dr. r^{2} = 2\pi\sigma \int_{o}^{R} r^{3} dr = 2\pi\sigma \left[\frac{r^{4}}{4}\right]_{0}^{R}$$
$$= 2\pi \frac{M}{\pi R^{2}} \frac{R^{4}}{4} = \frac{MR^{2}}{2}$$

VIII • IX • X ICSE • XI(Sc) • XII(Sc) • CET/JEE/NEET • CBSE • IGCSE • IB • A LEVEL/AS/HL/SL • Engineering Telephone: 9820246760 / 9769479368 • Websites: www.navlakhi.education Email: abhishek@navlakhi.com -or- kunal@navlakhi.com